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Intrinsic Randomness and Spontaneous 
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The effect of fluctuations of either thermodynamic or environmental origin on 
ignition in explosive systems is analyzed, with special emphasis on thermal 
explosion. A simple model due to Semenov is first analyzed in the zero-dimen- 
sional approximation. It is shown that the ignition times exhibit a wide disper- 
sion, which at the level of the probability distribution of temperature shows up 
as a transient bimodality. Next, an extension to a spatially distributed system is 
developed. It is shown that fluctuations induce unexpected symmetry-breaking 
phenomena, reflected by a considerable dispersion of the position of the first 
"hot spot" initiated in the system. 

KEY WORDS:  Fluctuations; combustion; explosive systems; transient 
bimodality. 

1. I N T R O D U C T I O N  

At some stage of their time development, physicochemical systems may 
undergo a sudden switching between two distinctly different levels of a state 
variable, preceded by a stow induction period and followed by a slow 
saturation characteristic of the final approach toward the stable attractor 
(Fig. 1). Explosive behavior in connection with thermal or chemical 
combustion, (1) the growth of a nucleus in a metastable medium, (~) 
switching in nonlinear optical or electronic devices, (3'4) and logistic growth 
in population dynamics (5) provide some characteristic examples of this 
highly nonlinear behavior. 

In some respects the mechanisms giving rise to sudden switching are 
simpler than those responsible for, say, chemical oscillations, waves, or 
chaos. (6,7) For  one thing, the system need not possess more than one 
attractor, nor undergo complex bifurcation cascades. As a matter of fact, it 
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Fig. 1. Typical time dependence associated with explosive behavior. 

need not even be an open system maintained permanently out of 
equilibrium by suitable constraints. For instance, thermal explosion in a 
closed vessel (8) in the limit of a high activation energy is an excellent 
example of the behavior depicted in Fig. 1. As regards systems under 
permanent nonequilibrium constraint, a typical situation giving rise to 
switching is depicted in Fig. 2. Here the system is started in a range of 
initial conditions and parameter values (2=20) close to a limit-point 
bifurcation (,~-= 2c). Due to the presence of a zero eigenvalue of the 
linearized stability problem at 2c, the first stages of the evolution are slow. 
As, however, the only attractor available [-upper branch in Fig. 2] is at 
large distance from the initial condition, a sudden jump is bound to occur 
sooner or later, removing the system from the vicinity of the limit 
point.(9,~~ 

Our principal objective in this article is to show that during the 
switching process the system is characterized by a high sensitivity to 
perturbations of either internal (thermodynamic fluctuations) or environ- 
mental origin. Although the main ideas and results have a rather wide 
applicability, we shall carry out the detailed analysis in the case of thermal 
explosion. We shall see that, as a result of the enhanced sensitivity, ignition 
becomes an intrinsically random event. Furthermore, when spatial degrees 
of freedom are incorporated in the description, one witnesses unexpected 
symmetry-breaking phenomena induced entirely by the fluctuations. These 
lead to marked differentiation in the position and occurrence time of "hot 
spots", the precursors of the nuclei of combustion. Our results highlight the 
wide applicability of the concepts of self-organization and order through 
fluctuations pioneered by Ilya Prigogine. 
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The paper is organized as follows. In Section 2 we set up the stochastic 
description of the fluctuations in a simple model of thermal combustion 
due to Semenov. In Section 3 we analyze the behavior in the zero-dimen- 
sional limit, in which spatial degrees of freedom are discarded. We find two 
striking manifestations of the high sensitivity of the system in the ignition 
region: a broad distribution of ignition times, and a transient bimodality of 
the probability distribution. In Section 4 the problem of  combustion in a 
spatially distributed system subjected to stochastic perturbations is 
formulated. In Section 5, it is shown that fluctuations induce a wide spatial 
dispersion of combustion. This stems from the fact that individual 
realizations of the underlying stochastic process develop spatially 
inhomogeneous profiles despite the homogeneity of the initial state and the 
strong invariance properties of the evolution laws. The main conclusions, 
along with some suggestions, are summarized in Section 6. 

2. STOCHASTIC FORMULATION OF THE S E M E N O V  MODEL: 
ZERO-D IMENSIONAL A P P R O X I M A T I O N  

We consider a finite reaction vessel of volume V and surface area S, 
which allows for thermal contact of the reactants with a reservoir at 
temperature To at the boundary of the vessel, but does not allow for mass 
flow of the reactants across the boundaries. An exothermic reaction is 
supposed to occur in the vessel. We assume that the reactants are 
distributed homogeneously, for instance, by an efficient stirring mechanism, 
postponing until Sections 4 and 5 the effect of spatial degrees of freedom. 
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We denote by ~ the concentration of the reactant and by T the internal 
temperature. In the limit in which the thermal relaxation time is much 
faster than the chemical one, one may neglect the reactant consumption 
and identify g with its initial value Co. Assuming a single irreversible mth- 
order reaction, one obtains, then, the following equation of evolution for T: 

p C v  dT/d t  = Qc'~k o exp( -  U / R T )  - ? ( T -  To) (1) 

Here p and Cv are, respectively, the mass density and specific heat of the 
system; Q is the heat of reaction; U is the activation energy; Ris  the gas 
constant; and ? = c~S/V, ~ being the Newton cooling coefficient. 

It is well known (1) that there exists a range of parameter values for 
which Eq. (1) admits two simultaneously stable states separated by an 
intermediate unstable state. However, in the limit of high activation energy, 
which is the usual situation in combustion, 

~' = R T o / U  < 1 (2) 

the high-temperature "combustion" branch corresponds to unrealistically 
large values of temperature. On the other hand, the low-temperature 
"extinction" branch as well as the intermediate unstable branch are well 
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Fig. 3. Multiple steady states in the Semenov model [Eq. (1)], Parameter value: e' =0.08. 
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described. Figure 3 gives a plot of these latter steady states T~ as a function 
of the scaled parameter 

6 = 7/Qc'o" k o (3) 

Let the system be started in the region of parameter values to the left 
of the turning point of the lower branch of Fig. 3. One will observe than a 
thermal explosion, whereby, after an induction period, temperature 
increases suddenly and tends to the combustion branch of the steady-state 
diagram, in a way similar to Fig. 1. Because of the unrealistically high value 
of the latter, we discard the part of the evolution referring to the final 
saturation, since for that stage the assumption of no consumption of the 
reactant breaks down. Figure 4 describes the induction period and the first 
stages of explosion, for which the theory provides a satisfactory description. 
As 6 comes closer to 6c, ignition becomes sharper in the sense that the 
initial plateau becomes increasingly longer, or, in other words, ignition 
time tends to infinity. A straightforward computation yields (1~ 

t i ~ ( l - -  C~/C~ c. ) - -1 /2  (4) 

which is analogous to the phenomenon of "critical slowing down" familiar 
from phase transitions. 

Fig. 4. 

"% o 
. , 1.1~ 

t I I I I I 
.25 .50 .75 I. 1.25 1.50 105 

Time 

o 
2 

I - -  
1.2 

Thermal explosion behavior to the left of the turning point of Fig. 3. Parameter value 
as in Fig. 3. 



1076 Nicolis and Baras 

We now turn to the stochastic aspects of the problem. (11'x2~ Two kinds 
of dynamical processes take place simultaneously in the system: a chemical 
reaction within the vessel and a transport of energy between the vessel and 
the external reservoir. The master equation for the probability distribution 
of the energy E can therefore be divided into two parts, 

d 
dt p (e ,  t) = Lr + rtr (5) 

As usual, we shall model the effect of chemical reactions by a birth and 
death process. (6) In the present case of a single irreversible reaction, one 
deals in fact with a pure birth process for the energy variable, and 

with [cL Eq . (1) ]  

L~h = )~(E- Q) P ( E -  Q) - 2(E) P(E) (6a) 

U 
2 (E )=  Vkoc~exp(kBE--/-NCI~) (6b) 

where N is the total number of particles. We recall that in the Semenov 
approximation the reactant consumption is neglected: N must be treated 
therefore as a constant parameter. 

Since the system under consideration possesses a unique attractor, one 
may capture the main features by reducing Lch to a Fokker-Planck 
operator, ~13) provided that one expands the stochastic variables around the 
value given by the deterministic laws of evolution. It is well known that this 
in turn is equivalent to augmenting the rate law, Eq. (1), by including a 
chemical random force Fch(t). A standard calculation ~11 13~ leads to the 
following properties: 

(Fob(t)) = 0 

(F~h(t) Fch(t') ) = 8Qch <5(t- t') (7) 

Q~h = (O/pCv) 2 koc'~ e x p ( -  U/RT) 

where e = V 1 is the inverse of the size. 
We next turn to the stochastic description of the transport process. 

The evolution operator Ltr, Eq. (5), has the form (12'14) 

Lt r=  f de { W( Eo + e, E - e l Eo, E) P( Eo + e, E - e )  

+ W(Eo-- e, E+ el Eo, E) P (Eo-  e, E+ e) 

- [W(Eo, E l E o - e ,  E + e ) +  W(Eo, ElEo+e, E - z ) ]  P(Eo, E)} (8) 
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where E0 denotes the energy of the reservoir and W the transition 
probability per unit time between two different energy states of the system 
and the reservoir. As for Lch, we reduce L~ to a Fokker-Planck operator 
and fix the form of the W's by requiring that detailed balance be satisfied at 
equilibrium. This leads to the following properties of the random force 
Ftr(t) associated with the transport: 

(Fir(t)) = 0  

(Fir(t) Ftr(t')) = eQtr 6(t - t') (9) 

Q~r = [y/(pCv) 2] kB(T 2 + ~)  

Summarizing, then, we obtain an augmented Semenov equation incor- 
porating the effect of fluctuations in the form 

d Qc~'koexp(_~ ) 7 
dt T -  pCv - - ~ v  (T -  To)+ F(t) (10) 

where F(t)= Fob +Ftr is a Gaussian white noise whose strength is allowed 
to depend on the deterministic solution: 

(F ( t ) )  = 0, (F(t)F(t'))=eQr6(t-t ') (11) 

being the inverse of the system size. The precise form of QT can be deter- 
mined by adding Qch and Qtr, Eqs. (7) and (9): 

Koeo kB( :r2 + (12) Qr=-(pCv)2 exp + (p--~v)2 

All desired properties of the fluctuations can be computed from the above 
equations or from the Fokker-Planck equation for the underlying 
probability distribution: 

0 e 0 2 
P(r;t)=  F~ + Q t) (13) Ot -OTLOT ~ r-~P(T;  

The drift term of this latter equation features the deterministic potential, 

qt=frdT'VQc'~k~ To) ] (14) 
L pCv 

3. I G N I T I O N  T I M E  S T A T I S T I C S  A N D  T R A N S I E N T  B I M O D A L I T Y  

Consider now the spontaneous explosion region, that is, values of 6 
less than the ignition limit 6 c (see Fig. 3). Figure 5 reports the results of 
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Fig. 5. Two different views of the dispersion of ignition times induced by the fluctuations. 
(a) Different realizations of the stochastic process, Eq. (10). (b) Probability distribution of 
ignition times. Parameter values: a ' =  0.08, e = 0.001. 
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numerical solution of the Langevin equation for different g's and initial 
conditions. In each case, the stochastic trajectory is followed and the times 
at which it crosses a preassigned level of temperature value T,, represen- 
tative of explosion are determined. This allows one to compute the 
probability distribution o f  ignition times. We see that far from the ignition 
point this distribution is narrow, and its peak coincides with the deter- 
ministic explosion time. However, as ~ approaches the critical (limit point) 
value 3c the distribution becomes very broad, and the position of its 
maximum is substantially different from the deterministic time, which 
belongs to the tail of the ignition time distribution. In other words, ignition 
becomes essentially a random event. Moreover, fluctuations tend to advance 
the most probable value of ignition time. 

Let us outline a qualitative explanation of these results. To this end we 
compute the mean zl and the variance 6% of the first passage time for 
reaching the critical value To., starting from an initial state T(0) close to the 
reservoir temperature T o. Treating Tc and T = 0 ,  respectively, as an 
absorbing and as a reflecting barrier, we obtain/15/ 

2 ~Tc 2 ~' 

&2 = (z2 - r~) 1/2 (16a) 

with 

a aQr 8 2 
(~G 2~2(x) q- 2 ax 2T2(x)= -2 r l (x )  (16b) 

Equations (15) and (16) are in general intractable, in view of the full 
expression of the kinetic potential [cf. Eq. (14)]. We shall therefore resort 
to an approximation that allows us to obtain some qualitative information 
capturing the essence of the phenomenon of interest. Specifically, noting 
once again that after a first transient the rate of change of the temperature 
levels off at a very small value during a time period essentially equal to the 
time of ignition, we approximate the rate law in this range by a fixed, 
positive parameter ~. Clearly, ~ is a decreasing function of the cooling rate 
? and an increasing function of the parameter a' [cf. Eq. (2)], the ratio of 
thermal to activation energy. The kinetic potential ~' becomes [assuming 
o-U(0) = 0] 

~(~v) = -~T; T(0) ~< T <  T~ (17) 

In Fig. 6 the full potential [Eq. (14)] and its approximation provided by 
Eq. (17) are plotted. We see that the approximate representation is 
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Fig. 6. Kinetic potential [Eq. (14)] and its simplified representation [Eq. (17)] in the 

Semenov model. Parameter values: e'= 0.08, 6 = 1.1 • 10-a 

reasonable for values of T between To and a value that is as close to Tr as 
desired, provided that e' is sufficiently small and the system operates close 
to the limit point of Fig. 3. 

Expressions (15) and (16b) may now be evaluated explicitly. The 
result is 

1 eQT~ [ 2~T(0!'] _ exp ( 2~z T~'] 1 (18) 
T I = ~  [ T c - T ( 0 ) ] - - ~ J 2  Lexp~ ~QT J - ~ Q r J l  

5T22=eQrETc-T(O)]+[9(~-'/~); ~ , ~ 1  (19) 5 3 
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From Eq. (18) we see that zl is shorter than the deterministic value 
[ T c - T ( 0 ) ] / e .  Moreover, as e decreases with increasing 7, it is predicted 
that both the advancement of the explosion and the broadening of the 
probability distribution of ignition times (measured by 5~2) will become 
increasingly marked with increasing ~,. These predictions are in full 
agreement with the numerical results shown in Fig. 5. 

We may push the estimate of the broadening of the distribution 
somewhat further by evaluating the ratio 5r2/r~. We have 

((~'(2)/~71 ~ (~,Q~')l/2/O~ (20) 

independent of [ T c - T ( 0 ) ] .  Now, for the parameter values used in the 
simulations, eQr/c( 2 turns out to be as large as about 0.1, although e is only 
10 3. This gives a dispersion 6z2 that is in qualitative agreement with the 
numerical results. We see the important role played in the problem by the 
existence of a slow time scale, which enhances the response of the system to 
even very weak stochastic perturbations. 

Further insight into the intrinsic randomness of the system can be 
obtained by studying the probability distribution P(T,  t) as a function of 
time. As shown in Fig. 7, starting with a distribution centered on a 
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Fig. 7. Successive stages of evolution of the probability distribution P(~, t) obtained by 
numerical solution of the Fokker-Planck equation [cf. Eq. (13)] in which the exponential 
factor exp(-1/e'T)is approximated by exp(O) with T= 1 +e'O {?= (1/g)[exp(-1/e')] t}. 
Parameter values: 5 = 1.266 • 10-4, e, = 0.08, e = 0.001. 
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low-temperature state, the system gradually develops a long tail and 
subsequently a transient bimodality, before collapsing again to a unimodal 
distribution centered on the stable attractor. 

Figure 8 outlines a qualitative explanation of this new mechanism of 
internal variability. Remember that we are dealing with a process involving 
two time scales, and that our system is initially prepared in a state in which 
the deterministic rate is very small. The maximum of the underlying 
probability distribution, whose motion roughly follows the deterministic 
one, will therefore move very slowly toward the region of higher values of 
T. Meanwhile, because of the fluctuations, the probability will develop a 
width proportional to the length of the induction period and inversely 
proportional to the square root of the size V. If the length of the induction 
period is large, the size effect will be counteracted and the width will be 
appreciable. As a result, a substantial part of the probability mass will 
reach the ignition point well before the maximum does so. At this moment 
it will be quickly entrained by fast motion toward the region of high values 
of T, a phenomenon that will be interpreted by the observer as a 
precocious ignition. This leak of probability wilt go on continuously, but 
since the system cannot reach infinite values of temperature, a "traffic jam" 
will arise, as a result of which a new probability peak will emerge in the 
region of high T. Eventually the primary peak, by then considerably 
diminished, will reach the ignition point and this will mark the end of 
transient bimodality. The same argument suggests that the deterministic 
ignition time should belong to the tail of the ignition probability 
distribution, in agreement with the numerical results of Fig. 5. 

X 
Fig. 8. A qualitative view of the phenomenon of transient bimodality. 
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4. THERMAL IGNITION IN A SPATIALLY 
DISTRIBUTED SYSTEM 

Consider now a slab of length 2L in which a single first-order irrever- 
sible exothermic reaction is taking place. The deterministic mass and 
energy balance equations are 

6g k o g e x p ( - U )  ~2 6 t -  - ~  +Dc~r2 { (21a) 

6" Q k o i e x p / - U ' ~ +  62 
6-7=pC---; ( lb) 

In addition to the notation introduced already in Eq. (1), D, and D r 
represent, respectively, the mass and thermal diffusivities of the reactant. 

It will be convenient to switch to dimensionless variables, 

= r/L; 2 = g/Co; 0 = T/T o (22a) 

where Co and To are the initial concentration and temperature, respectively. 
We assume that 

U/RTo= 1/~'>> 1; Dr=D,.  (22b) 

and introduce the characteristic diffusion and reaction times 

tD=L2/DT=L2/D,,; tch = k o  ~ exp(1/e') (22c) 

Moreover, we limit ourselves for simplicity to a closed system (adiabatic 
explosion). Equations (21a) and (21b) thus take the final form (17) 

-~ 2 tD 6~ 2 ff = --2 --tch exp -- e-~ (23a) 

----;-;w~O=(Oaa-1)2--exp - (23b) 
lch 

- 1 ~ 1  

supplemented with the zero-flux boundary conditions 

_+1 _+1 

The "adiabatic temperature" 0ad featured in Eq. (23b) is related to the 
maximum temperature that would be attained once the reaction is c o r n -  

822/48/5-6-9 
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pleted in a spatially uniform system. It is determined 
conservation, 

. Q Co'~ pCvrmo =pC TO +O_eo= CvTO 1.;-d;Z) 

by energy 

o r  

0ad ~--- Trna~x = 1 +--~-Q c--9-~ (24) 
To pCv To 

In what follows we fix the adiabatic explosion parameters to the values 
T o = 800K, Tmax = 2000K, U/R = 1 0  4, 8' = 0.08. This gives 0ad = 2.5 and an 
ignition temperature of 0cr = 2. 

We now augment Eqs. (23a)-(23c) by adding fluctuations. As in Sec- 
tion 2, we describe their effect by adding to their right-hand sides random 
forces F~(~, t) and Fo(~, t) representing Gaussian white noises in both 
space and time: 

(Fx({, t ) )  =0;  (Fo({, t ) ) = 0  

(Fx(~, t) Fx(~', t') ) = eQ~ 6(4 - ~') 6 ( t -  t') 

( Fo(~, t) Fo(r t') ) = eQo 6(~ - ~') 6 ( t -  t') (25) 

(Fx(~, t)Fo(~', C))=0 

The variances Qx and Qo must be fixed to satisfy a nonequilibrium 
fluctuation-dissipation theorem extending Eqs. (7) and (9) to spatially 
distributed,systems. It should also be noted that if E~(~, t) and Fo(~, t) are 
to represent thermodynamic fluctuations, they should contain two pieces: 
one scalar contribution appearing in Eqs. (25) in a additive fashion, and a 
second one associated with the divergence of the random part of the 
diffusive flux. (15'16) In what follows, however, we treat Qx and Qo as 
parameters and do not perform this decomposition explicitly. From this 
point on, therefore, Fx and Fo should be looked at as stochastic pertur- 
bations of external origin. 

Figure 9 describes the successive steps leading, in the absence of 
fluctuations, to a uniform temperature profile following an initial 
inhomogeneous perturbation at the center of the slab. We observe an initial 
stage of slow evolution followed by a fast increase of temperature 
throughout the slab, in agreement with Fig. 4. At t = 0.07 the entire system 
has reached a temperature at least equal to the ignition temperature 0or = 2. 
In the representation of Fig. 4 this corresponds to the inflection point of the 
temperature versus time curve. 
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Fig. 9. Successive steps leading, in the absence of fluctuations, to a uniform temperature 
profile following an initial inhomogeneous perturbation at the center of the slab. Parameter  
value: e' = 0.08. 

5. F L U C T U A T I O N - I N D U C E D  S Y M M E T R Y  BREAKING A N D  
HOT SPOT STATISTICS 

Figure 10 reports the behavior of a particular realization of the 
stochastic process obtained by adding fluctuations in Eqs. (23a)-(23c). 
Despite the small value of the variance chosen (eQ~=eQx=0.001), we 
observe strong deviations from the deterministic behavior. Specifically, 
while for t small the slab remains practically homogeneous, close to the 
critical (ignition) time strong inhomogeneities are spontaneously 
developed. Actually, there is a wide dispersion from one sample to another: 
while in the realization of Fig. 10 the temperature first reaches high values 
close to the middle part of the slab, in other realizations the maximum may 
be reached in the left or in the right boundary. 

A first visualization of the overall spatial organization of the system is 
provided by Fig. 11. The system is divided into 20 cells and a great number 
of different realizations of the stochastic process is recorded. In each cell 
the number of times the temperature has exceeded the critical value 0or = 2 
is counted at any given instant, and the corresponding probability 
P(O >10cr) is deduced as a function of both space and time. We observe that 
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Fig. 10. A particular realization of the stochastic process obtained by adding fluctuations in 
Eqs. (23a)-(23c). Parameter values as in Fig. 9, with, in addition, eQ:, =eQo = 0.001. 
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Fig. 11. Different stages of the spatial organization of a one-dimensional system undergoing 
thermal explosion in the presence of fluctuations. Notice the fluctuation-induced space sym- 
metry-breaking during a time interval around explosion. Parameter  values: e ' =  0.08, 0or = 2. 
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prior to explosion the system remains homogeneous. However, during a 
time interval close to explosion (~0.07 time units) the system develops 
systematic inhomogeneities at the macroscopic level. The inhomogeneities 
start because of the relatively higher probability to explode near the boun- 
daries, since diffusion as a mechanism of heat removal is half as effective as 
elsewhere (zero-flux boundary conditions). Subsequently, however, the 
probability to have exploded becomes higher in the middle. Eventually, 
uniformization is taking place, and at 0.075 time units the entire slab is 
practically at the final temperature (compare to Fig. 9). 

A particularly relevant piece of information--especially for the 
purpose of comparing with real-world experiments--is to record the 
probability that explosion has been initiated at a given point in space, 
whatever the value of the time of this particular explosion and the sub- 
sequent evolution of the system might have been. The complementary 
information of having the probability for the system to explode at a given 
time, whatever the space region in which explosion has first occurred might 
be, would also be desirable. Figure 12 depicts these two functions. In 
Fig. 12a we observe a rather striking spatial dispersion of the hot spots that 
initiate the explosion process. Figure 12b, to be compared with Fig. 5, 
shows that a dispersion of ignition times is likewise expected. However, it 
exhibits in its details some differences with the dispersion obtained in the 
preceding section: first, the ignition time probability is practically 
symmetric around the deterministic value of ignition time; and second, the 
dispersion is less pronounced than in the Semenov case. The main reason 
for this difference is that the value of e'=0.08 chosen in the numerical 
simulation is still relatively high, so that the adiabatic explosion does not 
exhibit an induction period as pronounced as the explosion near a limit 
point. Still, Eq. (20) provides a reasonable estimate: for eQo = 10 3 and 
c~ ~ I (the values corresponding to the numerical simulations) one obtains 
a relative dispersion of about 0.02, in good qualitative agreement with the 
results reported in Fig. 12b. 

The spatial differentiation revealed in Figs. 10, 11, and 12a can be 
further characterized by computing the time development of the space 
correlation function, 

Ct(2, j)  = (6T(2) c~T(j))t/(aT2(2)>,; j =  2,..., n (26) 

where j denotes a discretized space coordinate running through the system. 
To avoid spurious effects, the first lattice point after the left boundary is 
discarded. 

The system is again started with a uniform initial condition. For time 
intervals around the explosion one then finds the behavior depicted in 
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Fig. 13. 

\ \ 

/ 

k ~ 7  y t 

j ~ 0.067 

Time evolution of the normalized temperature space correlation function under the 
same conditions as in Figs. 11 and 12. 

Fig. 12. On the one side, the correlation function becomes nonuniform and 
decays monotonically with distance. But on the other side, it maintains a 
rather invariant profile throughout the explosion stage, showing only a 
slight enhancement in the immediate vicinity of the explosion time. This 
indicates a high degree of spatial coherence between macroscopically 
distant parts of the system, despite the complete absence of correlations of 
the noise source in space. In a sense, the initial deviation from equilibrium 
acts like a constraint inducing long-range order, in a way analogous to 
what is found in the study of correlations around nonequilibrium steady 
states.(18) 

6. D I S C U S S I O N  

The theoretical explanation of the increased sensitivity of explosive 
systems to fluctuations remains fragmentary. The evaluation of the first and 
second moments of the passage time probability using a more realistic 
model than in Section 3 would be desirable. As for the behavior of spatially 
distributed systems, the effect of the system's size, of the boundary 
conditions, and of the geometry remains to be investigated. Moreover, 
the role of the dimension of the hot spot initiated by a fluctuation in its 
subsequent evolution should be assessed. 

The phenomenon of transient bimodality has recently been verified 
experimentally in electrical ~ and in opticaP 4~ systems. It would be impor- 
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tant to undertake a systematic experimental study of thermal combustion 
from a similar standpoint. Our analysis of spatially distributed systems is 
likely to be especially relevant in this context. It could provide a rational 
basis for understanding the pronounced variability of the phenomenon of 
combustion observed routinely in many experimental situations but 
attributed ordinarily to parasitic effects or to experimental imperfections. 
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